ISSN 2277 - 8322

Natural Radioactivity in the Petroleum Waste from Iraqi Refinery

Kareem. K. Mohammad¹, Nada F. Tawfiq², Essam M. Rasheed²

¹Al-Nahrain University, College of Engineering, Iraq ²Al-Nahrain University, College of Science, Iraq E-mail: nadafathil@yahoo.com

Abstract - The present study aimed to measure the natural radioactivity present in the crude oil and oil waste of Iraqi refinery. The specific activities in (19) samples of crude oil and oil waste from Dora and Bijie refineries in Iraq were measured using gamma spectrometry technique, with high purity germanium detector (HPGe). The results show that two radionuclides (²¹⁴Bi, ²¹⁴Pb) belonging to the ²³⁸U series, three radionuclides (²⁰⁸Ti, ²¹² Bi, ²¹² Pb) belonging to ²³²Th series, one natural radionuclide (⁴⁰K), and one artificial radionuclide (¹³⁷Cs) were detected. For Dora refinery, solid samples, D1-D8, the average specific activities ²¹⁴Bi, ²¹⁴Pb were 11.7, 21.9 Bqkg⁻¹, the average specific activities of ²⁰⁸TI, ²¹²Bi, ²¹²Pb were 11.9, 6.8, 8.6 Bqkg⁻¹, the average specific activity of ¹³⁷Cs was 1.3 Bqkg⁻¹, the average of specific activity of ⁴⁰K was 147 Bqkg⁻¹ and for liquid samples D9-D12, the average specific activities ²¹⁴Bi, ²¹⁴Pb were 0.5, 2.4 Bql⁻¹, radionuclides ²⁰⁸TI, ²¹²Bi, ²¹²Pb, ¹³⁷Cs were not appeared and the average specific activities of ⁴⁰K was 4.0Bq⁻¹. For Bijie refinery solid samples J1-J5, the average of specific activities of ²¹⁴Bi and ²¹⁴Pb were 0.8, 2.2 Bqkg⁻¹, the average specific activities of ²¹²Bi and ²¹²Pb were 0.2 , 0.1 Bqkg⁻¹, the average of specific activity of natural radionuclide ⁴⁰K was 2.9 Bqkg⁻¹ and for liquid samples the average specific activities ²¹⁴Bi, ²¹⁴Pb were 0.5, 2.4Bq⁻¹, the radio nuclides, ²⁰⁸TI, ²¹²Bi, ²¹²Pb and ¹³⁷Cs were not appeared in Bijie samples.

Keywords: Crude oil, NORM, sludge, Scale, Petroleum.

I. INTRODUCTION

The oil extraction and production industry generates several types of solid and liquid waste, scales, sludge, and water. There are typical residues found in such facilities which are likely to be contaminated with Naturally Occurring Radioactive Material (NORM). As a result of oil processing, the natural radionuclides can be concentrated in such residues, called Technologically Enhanced Naturally Occurring Radioactive Material (TENORM) [1]. TENORM wastes associated with oil and gas operations at the oil fields occur in the form of scale deposits, sludge and water generated during operations.

Scales formed by precipitation, as well as sludge, which accumulates in the bottom of storage tanks, and other equipment contain variable amounts of the naturally occurring radionuclides from the ²³⁸U and ²³²Th series besides ⁴⁰K. The main radionuclides concentrated in scales and sludge during the production of oil and gas are ²²⁶Ra and ²²⁸Ra [2-4]. Scales buildup may cause problems in the operation of an installation by clogging tubing and valves, thus restricting the flow. Radionuclides are known to be associated with organic materials in nature. Therefore, oil, gas and oil field brines frequently contain radioactive materials [5]. These materials accumulate in piping used to remove, transport and process petroleum and natural gas. Emphasis was given to the quantification of ²²⁶Ra and ⁴⁰K since these radionuclides is responsible for most of the external exposure in such facilities [6-7]. Gamma spectrometry system used in this study is a fully integrated data acquisition and computation system comprising of high purity germanium detector, preamplifier, amplifier, multi channel analyzer (MCA), Bias high voltage power supply (0-5000 cps). Personal computer is used as (MCA) [8-9].

II. MATERIALS AND METHODS

The details of samples of scale and sludge taken from Al-Dora and Bijie refineries are shown in Table I. The oil waste and crude oil samples taken from the refineries were stored for one month under normal laboratory conditions, which is necessary to get a radiological equilibrium.

Sample	State type	Location of samples	
code			
D1	solid –	oil waste from al-sudanya	
	sludge		
D_2	solid-scale	oil waste from (heavy	
		products)	
D_3	solid –	oil waste from (light	
	sludge	products)	
D_4	solid –	oil waste around pit	
	sludge	abandonment	
D_5	solid –	oil waste from (Hi-tech)	
	sludge		
D_6	solid-	oil waste from beside of	
	brines	furnace	
D_7	solid –	depleting area of crude oil	
	sludge		
D_8	solid-	refining dep. down of furnace	
	sediment		
\mathbf{J}_1	solid-	vacuum residue produces	
	sludge	from RC	
т	1.1		
J_2	solid –	extract from heavy metal	
	scale	from RC	
J ₃	solid –	foam wax heavy metal from	
5	scale	RC	
J_4	solid-	oil waste from storage tank	
	sludge	C C	
J_5	solid –	Asphalt	
	scale	_	
D ₉	liquid-	reached crude oil from	
	scale	Kirkuk	
D ₁₀	liquid-	reached crude oil from	
	scale	Basrah	
D ₁₁	liquid-	oil waste from (pit	
	scale	abandonment)	
D ₁₂	liquid-	Reduce crude oil (RC)	
	scale		
J_6	liquid-	Crude oil	
	scale		
J_7	liquid-	RC	
	scale		

Table I: The types and locations of samples

The activity concentrations of the radionuclides in the samples were measured using a High Purity Germanium Detector. The gamma spectrometry system consists of an n-type (EG & G ORTEC) of 17% relative efficiency having a resolution of 2 keV at 1332 keV and coupled to a 4096 channel multi-channel analyzer (MCA). The detector mounted in a cylindrical lead shield (100 mm thick) to reduce the background radiation.

The background spectra were used to correct the net peak area of gamma rays of the measured isotopes. The energy and efficiency calibration were performed using a reference standard solution of Europium -152 Figure 1. One kilogram of each solid sample and one liter of each liquid sample was taken in a standard marinelli beaker and counted 1080 second. The activity concentration of ²²⁶Ra was evaluated from the energies of 351.92keV of ²¹⁴Pb and 609.31keV of ²¹⁴Bi, respectively. Similarly, the activity concentration of ²³²Th was determined from the energies of 583.19keV of ²⁰⁸Tl, 1080keV of ²¹⁴Bi and 238.6KeV of ²¹²Pb. This was based on the assumption that secular equilibrium has been long-lived parent established between the radionuclide's ²³⁸U and ²³²Th, and their short lived daughter radionuclide's. The activity concentration of ⁴⁰K was determined from the energy of 1460.83keV. The expression used for the calculation of the activity concentrations is given by the following equation in Bq/kg [6]:

Activity (Bq kg⁻¹) =
$$\frac{cps}{\varepsilon * w * I_{\gamma}}$$
 (1)

Where cps: is the net counts/s under the photo peak of interest,

ε: is the counting efficiency,

 $I_{\boldsymbol{\gamma}}:$ relative intensity of gamma emission at energy considered,

W: is the mass of the sample (kg).

The external dose from NORM in the oil waste from the oil locations was calculated by using the following equation [10]:

$$H(t) = A_{x} \times DRF$$
(2)

Where,

H (t): The external dose rate at time (t), nGy/h.

 $A_{\rm x}$: The specific activity of radionuclide of the sample, Bq/kg.

DRF: The dose rate conversion factor.

DRF for Th-232 series = (0.623) nGy/h per Bq/kg. DRF for U-238 series = (0.461) nGy/h per Bq/kg. DRF for K-40 = (0.0414) nGy/h per Bq/kg.

III. RESULTS AND DISCUSSION

The specific activities for the radionuclide's for twelve solid samples of scale and sludge from Dora and Bijie refineries were shown in Table II. The radionuclides detected in this study include: ²¹⁴Bi, and ²¹⁴Pb belong to the ²³⁸U series, and radionuclides ²¹²Bi, ²¹²Pb, and ²⁰⁸Tl belonging to ²³²Th series, one natural radionuclide - ⁴⁰K, and one artificial radionuclide ¹³⁷Cs.

For Dora refinery, solid samples, the average of specific activities of 214 Bi, 214 Pb were 11.7 ± 10.4 and 21.9 ± 23 Bq/kg respectively, the average of specific activities of 208 Tl, 212 Bi, 212 Pb were 11.9 ± 7.8 , 6.8 ± 4.7 and 8.6 ± 5.3 Bq/kg, the average of specific activity of artificial radionuclide 137 Cs was 1.3 ± 1.7 Bq/kg and the average of pecific activities of natural radionuclide, 40 K was 147 ± 40 Bq/kg.

The highest concentrations for 214 Pb, 208 TI were 79 and 32.31 Bqkg⁻¹ respectively in sample D₈ (solid sediment), Figure 2, for 137 Cs 5.20 Bqkg⁻¹ in sample D₂ (solid scale), and for 40 K, 189.3Bqkg⁻¹ in sample D₇ (solid –sludge). The radionuclides, i.e., 212 Bi, 226 Ra, 208 Tl, 212 Bi, 212 Pb and 137 Cs were not appeared in liquid samples, the average of specific activities of natural radionuclide 40 K was 4.0±2.0Bqkg⁻¹.

For Bijie refinery, solid samples, the average of specific activities of 214 Bi, 214 Pb were 0.8±0.8, 2.2±0.7 and 212 Bi 0.2 Bqkg⁻¹ respectively and for natural radionuclide 40 K 2.9±1.5, the radionuclides,

i.e., ²⁰⁸Tl, ²¹²Bi, ²¹²Pb and ¹³⁷Cs were not appeared in solid samples, Figure 3.

For liquid samples, the average of specific activities of 214 Bi, 214 Pb were 0.5 and 2.4Bq/kg, the radionuclides, i.e., 208 Tl, 212 Bi, 212 Pb and 137 Cs were not appeared in liquid samples, the average of specific activities of natural radionuclide 40 K was 3.7 ± 1.9 Bqkg⁻¹.

The equivalent dose from NORM in the samples from all the oil location was calculated using equation (2), as shown in Table IV.

The lowest exposure rate was 0.05 mSv/y for Bijie refinery samples, and the highest exposure rate was 0.12 mSv/y for Dora refinery. All these values are below the allowed limit from IAEA that was 1 mSv/y for the public [11].

Workers and people that live in oil locations and refineries most likely to be exposed to this source of radiation from oil waste, but production sites can also pose a potential hazard to members of the public.

The radioactive contamination may be present in produced water, drilling mud, or can concentrate in pipes, storage tanks, or other extraction equipment. The contamination may be present in mineral scale, sledges, slimes, or evaporation ponds or pits. The radiation comes from (NORM) in the underground rock and sediment. When companies drill for gas or oil, the produced fluids, including water, may contain radionuclides, primarily radium-226, radium-228, and radon. The radon gas may be released to the atmosphere, while the produced water and mud containing radium are placed in ponds or pits for evaporation, re-use, or recovery.

The reason of the difference in the natural radioactivity for Bije and Dora refinery that the most crude oil of Dora refinery comes from Southern of Iraq which contains a small concentration of uranium.

Sample	²¹⁴ Bi	²¹⁴ Pb	²⁰⁸ Tl	²¹² Bi	²¹² Pb	⁴⁰ K	¹³⁷ Cs
code	Bq/kg	Bq/kg	Bq/kg	Bq/kg	Bq/kg	Bq/kg	Bq/kg
	Dora refinery samples						
D	6.6	12.6	7.3	3.3	5.5	117.9	BDL
D ₂	6.9	20.3	7.1	2.2	5.8	107.6	5.2
D ₃	8.4	4.1	9.9	5.6	8.3	178.9	0.7
D ₄	8.5	18.6	10.0	6.9	7.9	180.7	BDL
D ₅	6.2	14.1	7.6	4.9	5.3	140.6	0.8
D ₆	9.0	29.8	11.0	6.1	6.9	184.9	0.5
D ₇	8.8	14.5	10.1	6.7	6.7	189.3	0.3
D ₈	39.1	79	32.3	18.6	22.5	76.1	0.3
Average	11.7±	21.9±23	11.9±7.8	6.8±4.7	8.6±5.3	147±40	1.3±1.7
	10.4						
	Biji refinery samples						
J	BDL	BDL	BDL	BDL	BDL	1.5	BDL
^J 2	BDL	BDL	BDL	BDL	BDL	1.7	BDL
J ₃	1.9	3.2	BDL	BDL	BDL	5.7	BDL
J ₄	0.2	1.5	BDL	0.2	BDL	2.5	BDL
J ₅	0.2	2.0	BDL	BDL	BDL	3.1	BDL
Average	0.8±0.8	2.2±0.7	BDL	0.2	BDL	2.9±1.5	BDL

Table II The specific activities (Bq/kg) of radionuclide's in solid samples from Dora and Bijie refineries

Table III

The specific activities (Bq/l) of radionuclide's in liquid samples from Dora and Bijie refineries

Sample	²¹⁴ Bi	²¹⁴ Pb	²⁰⁸ Tl	²¹² Bi	²¹² Pb	⁴⁰ K	¹³⁷ Cs
code	Bq/l	Bq/l	Bq/l	Bq/l	Bq/l	Bq/l	Bq/l
			Dora refi	nery samples	5		
D ₉	BDL	BDL	BDL	BDL	BDL	5.2	BDL
D ₁₀	BDL	BDL	BDL	BDL	BDL	6.7	BDL
D ₁₁	BDL	BDL	BDL	BDL	BDL	2.2	BDL
D ₁₂	BDL	BDL	BDL	BDL	BDL	1.8	BDL
Average	BDL	BDL	BDL	BDL	BDL	4.0±2.0	BDL

			Biji refir	nery samples			
J ₆	0.5	2.4	BDL	BDL	BDL	4.6	BDL
J ₇	BDL	BDL	BDL	BDL	BDL	1.8	BDL
Average	0.5	2.4	BDL	BDL	BDL	3.7±1.9	BDL

MDA: Below Detection Limit

Table IV The dose rate and equivalent dose from NORM in oil locations

oil location	Dose rate	Equivalent dose		
	(nGy/h)	rate (mSv/y)		
Dora refinery	20.22	0.12		
Bijie refinery	6.83	0.05		

Fig.1. Energy Calibration

Fig.2: Gamma-rays spectrum for sample (D_{g})

Fig. 3: Gamma-rays spectrum for sample (J₄)

IV. CONCLUSION

The activity concentrations of ²²⁶Ra, ²³²Th and ⁴⁰K in the collected samples were determined using high-resolution gamma spectrometry. This study showed that the activity concentrations of natural radionuclides in the collected samples are within the recorded values compared with similar samples studied in other countries. Although the activity concentrations of the selected isotopes

are lower than the values recommended by IAEA [11].

V. REFERENCES

- Al-Masri M. S., Aba, A., Distribution NORM in different oil fields equipment, Appli. Radi. and Isotopes, 63, 4, 457-463, 2005
- [2] Al-Masri M.S., Suman, H., NORM Waste in The Oil and Gas Industry: the Syrian experience, J. of Radio. and Nucl. Chem. 256,159–162, 2003

- [3] Shawky S., Amer, H., Nada, A.A., Abd El-Maksoud, T.R., Ibrahim, N.M., Characteristics of NORM in the oil industry from eastern and western desert of Egypt, Applied Radiation and Isotopes 55, 133–135, 2001
- [4] Hamlat M. S.; Kadi, H.; Fellag H., Precipitate Containing NORM in The Oil industry: Modelling and laboratory experiments. Applied Radiation and Isotopes 59,93–99, 2001
- [5] Paschoa AS, NORM and Petroleum Origin, App. Radi. and Isotopes, 48: 1391-1396, 1997
- [6] Mansour N. A., Ahmed T.S, Fayez- Hassan M., Nabil M. Hassan, Gomaa M.A. and A. Ali, Measurements of Radiation Level around the Location of NORM in Solid Wastes at Petroleum Companies in Egypt, Journal of American Science, 8(6), 252-260, 2012
- [7] Krane, K. S., "Introductory Nuclear Physics", 2nd ed., John Wiley and Sons, New York, 47, 76, 80, 1998
- [8] Friedlander G., Kennedy J., Macias E. S., Miller J. M. QD, Table of Nuclides Appendix, Gamma-ray sources, 1981.
- [9] Knoll, G. F. 'Radiation Detection and Measurement', John Wiley and Sons, USA, p 86-99, 1979.
- [10] Kocher D.C and Sjreen A.L, Dose Rate Conversion Factor for External to photon Emitters in soil, Health physics, 48, p.205, 1985.
- [11] (UNSCEAR),2000, Sources and Effects of Ionizing Radiation Report to the General Assembly, Scientific Committee on the Effects of Atomic Radiation UN, New York, pp. 34-52.